阅读历史 |
请收藏本站网址:bcshuwu.com

第215节(1 / 2)

加入书签

“唉~~”

他长长的叹了口气,思考着突破的方法。

房门响了。

王浩皱眉喊了一声,“进”,就看到周清源站在了门外。

他赶忙站起来说道,“周老师,你怎么来了?”

“你不知道吗?”

周清源走进来惊讶的问道,“昨天可是有个数学界的大新闻。”

“什么新闻?”

“和ns方程有关,你不是在做这个研究吗?《基础数学与应用数学》杂志,刊登了一篇论文,否定了ns方程常规取值下的光滑性。”

“否证了ns方程问题?”

“那倒是没有。”周清源道,“是在允许ns方程解集粗糙的情况下,方程的输出会非常不合理,一定程度上就证明,ns方程解集,很可能不具光滑性。”

王浩思考着说道,“这个逻辑不严谨吧?”

周清源道,“逻辑确实不够严谨,但证明非常严谨,我大致看了一下,没有发现问题。”

“能刊登在《基础数学与应用数学》杂志上,肯定是经过了非常精细的审核,而且论文作者是巴克马斯特,麻省理工大学的教授,偏微分方程应用领域非常有名的专家。”

《基础数学与应用数学》是数学类顶级学术期刊之一,排名长期都在前十行列,还是具有很大权威性的。

王浩皱眉想了一下,摇头坚定道,“我还没有看过证明,但我认为结论肯定是错误的。”

“这和我的研究直接冲突!”

“不可能的!”

“你这么确定?”周清源有些惊讶。

“当然。”

王浩肯定的点头,“这个证明,肯定是哪里有问题,我马上看看。”

你还说不是否定他的研究!

巴克马斯特,麻省理工大学教授,‘拉马努金奖’获得者,阿迈瑞肯国家科学院院士。

他是偏微分方程应用领域非常有名的专家,也是公认ns方程研究应用领域的权威,一直致力于ns方程理论应用的研究。

早在五年前,巴克马斯特就开始尝试对于ns方程研究的主要方法是否能够成功,进行了质疑和挑战,并发表了自己和同事一起研究的成果。

当时的成果还不完善,只是论证‘在特定的假设下,ns方程对物理世界的描述的不一致性’。

现在的这篇研究成果,则是在‘允许ns方程解集粗糙’的情况下,证明ns方程的输出不合理,也就是偏差值过大、不具稳定性。

举个例子来说明,比如,某一个参数调整为5,输出的数值是10;参数调整到6,输出的数值变成了60;参数调整到7,输出的数值又变成了11,输出的数值,并没有跟着参数缓慢的变动而变动,而是出现波动较大的情况。

这就是偏差值过大,不具稳定性。

在‘允许ns方程解集粗糙’的情况下,方程输出的数值不具稳定性,一定程度上就可以推断,方程本身也存在不稳定的情况,也就是一定程度上否证了ns方程解集的光滑性。

巴克马斯特本人还接受了采访,他解释道,“光滑解集用来表述物理世界是完备的,但是数学上讲,他们并不一定总是存在。”

“很多时候,我们只能用粗糙解集来对方程进行研究,也就是弱解。”

“就像是进行脸部的素描,每一条线并不一定画在固定位置上,但整体趋向是固定的。”

“如果脸庞的线画在了鼻子上,我们认为,就不是成功的素描,而是出现了低级错误。”

“如果在弱解集上出现这种错误,那么就可以认为,光滑解集,一定程度上,也是不完备(光滑)的。”

巴克马斯特接受采访的解释,逻辑是否合理还是要看个人判断,但他所做的证明却是逻辑严谨的。

王浩下载了论文的原版,仔细看了两个多小时,也没有找出其中的问题。

至于推导细节,能登上数学类顶级学术期刊,要经过两轮的审稿,几乎不可能出现类似的低级错误。

“不可能啊!”

王浩眉头紧皱的思考着,“过程不可能有错,逻辑上也没有问题……”

“难道证明是正确的?”

“这不可能!”

如果巴克马斯特的论证是正确的,就代表他的研究是错误的。

这怎么可能呢?

人脑思维可能出错,但系统对知识灵感的判定,还赶不上巴克马斯特的逻辑严谨吗?

或者说,巴克马斯特超越了系统?

“不可能!”

王浩决心和这篇论文杠上了,他又从头到尾审视了一遍,却依旧找不出任何问题,干脆就建立了个任务——

【任务四】

【研究项目名称:找出巴克马斯特研究的问题(难度:c)。】

【灵感值:0。】

“!!”

“难度

↑返回顶部↑

书页/目录